Previous sections, e.g., Part III and Part III produced diophantine triples and quadruples using the Diophantine equation
This new method produces multiples from a set of novel equations generating the variables x, y1, y2, ..., ym and z, where there occur multiple variables of y. The first example using the variables x, y1, y2, y3 and z for the quintuples as well as the equations listed in table A1 and A2 headings below according to the following formats:
δ1 | x | y1 | y2 | y3 | z | δ2 | |||
---|---|---|---|---|---|---|---|---|---|
a1 | a2 | a3 | D(a12 + a22 + a32) - n2 | 2na1 | 2na2 | 2na3 | D(a12 + a22 + a32) + n2 |
δ1 | x | y1 | y2 | y3 | y4 | z | δ2 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
a1 | a2 | a3 | a4 | D(a12 + a22 + a32 + a42) - n2 | 2na1 | 2na2 | 2na3 | 2na4 | D(a12 + a22 + a32 + a42) + n2 |
where a1, a2, a3 and a4 are generating numbers, D is any integer greater than zero and the (n2, 2n) are values taken from table B:
n2 | 1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 | 81 | 100 | ... |
---|---|---|---|---|---|---|---|---|---|---|---|
2n | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | ... |
Since there are an infinite number of (n2, 2n) integers there are also an infinite number of tables which can be tabulated with their accompanying equations. In addition, the multiples which are generated may be present in primitive or non primitive form, where non primitives may be converted to primitive forms by dividing out any common factors.
Table I depicts 3 quintuples with their respective aj, D and n values:
δ1 | x | y1 | y2 | y3 | z | δ2 | |||
---|---|---|---|---|---|---|---|---|---|
a1 | a2 | a3 | D(a12 + a22 + a32) - n2 | 2na1 | 2na2 | 2na3 | D(a12 + a22 + a32) + n2 | ||
1 | 1 | 1 | 2(1 + 1 + 1) − 1 = 5 | 2 | 2 | 2 | 2(1 + 1 + 1) + 1 = 7 | ||
3 | 4 | 5 | 3(9 + 16 + 25) − 4 = 146 | 12 | 16 | 20 | 3(9 + 16 + 25) + 4 = 154 | ||
8 | 7 | 6 | 5(64+ 49 + 36) − 9 = 736 | 48 | 42 | 36 | 5(64 + 49 + 36) + 9 = 754 |
Plugging these values into the equation:
confirming the z values of Table I.
Table II depicts 3 sextuples with their respective aj, D and n values:
δ1 | x | y1 | y2 | y3 | y4 | z | δ2 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
a1 | a2 | a3 | a4 | D(a12 + a22 + a32 + a42) - n2 | 2na1 | 2na2 | 2na3 | 2na4 | D(a12 + a22 + a32 + a42) + n2 | ||
2 | 2 | 2 | 2 | 4(4 + 4 + 4 + 4) − 9 = 55 | 12 | 12 | 12 | 12 | 4(4 + 4 + 4 + 4) + 9 = 73 | ||
3 | 4 | 5 | 6 | 3(9 + 16 + 25 + 36) − 4 = 254 | 12 | 16 | 20 | 24 | 3(9 + 16 + 25 + 36) + 4 = 262 | ||
8 | 7 | 6 | 5 | 5(64 + 49 + 35 + 25) − 9 = 861 | 48 | 42 | 36 | 30 | 5(64 + 49 + 35 + 25) + 9 = 879 |
Plugging these values into the equation:
confirming the z values of Table II. One need not stop at the multiples in this section but can continue on to the septuples, octatuples, and so forth, all of which can be generated via this method.
This concludes Part X. Go back to Part IX.
Go back to homepage.
Copyright © 2024 by Eddie N Gutierrez. E-Mail: enaguti1949@gmail.com