The Pellian equation
In addition, the method of converting a quadratic surd √D into continued fractions (pages 261-262) are also methods that can be used to generate these least solutions. On the other hand, this method is now available on this website as a computer program making it extremely easy to generate the convergents.
This article, a continuation of Part XIXA, is in regard to the sequences Sn generated from the the equations of the type N(n)(n+1) + m which have very interesting properties as was shown in Part XVII for 4(n)(n+3) + 5 and in Part IIIA for 4(n)(n+1) + 5. Six other sequences with similar equations are displayed below and two of the sequences, 36(n)(n+1) + 13 and 36(n)(n+1) + 5 were found to be subsets of the equations ending above in 5 and −3, respectively:
where all the sequences were evaluated at n ≥ 0. No values exist for Sn9 = 36(n)(n+1) + 9 (dashed line), since the terms generated are perfect square integers which are not allowed as values of D in the Pell equation and, consequently, when used in the program to calculate convergents will result in a "no integer solution".
All the terms above (the D values) were entered into the Pell calculator program to give values of Qn = +1 for different values of n. It should be noted that the x and the y terms are found at the bottom of column n − 1 just to the left of Qn in the coded examples. We can see that in the six coded examples: for 723 at
Tables I-VI show the first 11 D numbers in the six different sequences Sn. Although the values of D equal 3 and 5 in Tables I and II, respectively, they are tabulated even though they do not have the requisite properties, i.e., Qn = 1 shared with the other D terms of the equations.
D | 3 | 75 | 219 | 435 | 723 | 1083 | 1515 | 2019 | 2595 | 3243 | 3963 |
---|---|---|---|---|---|---|---|---|---|---|---|
x | 2 | 26 | 74 | 146 | 242 | 362 | 506 | 674 | 866 | 1082 | 1322 |
y | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 |
D | 5 | 77 | 221 | 437 | 725 | 1085 | 1517 | 2021 | 2597 | 3245 | 3965 |
---|---|---|---|---|---|---|---|---|---|---|---|
x | 9 | 351 | 1665 | 4599 | 9801 | 17919 | 29601 | 45495 | 66249 | 92511 | 124929 |
y | 4 | 40 | 112 | 220 | 364 | 544 | 760 | 1012 | 1300 | 1624 | 1984 |
yf | 4(1) | 4(10) | 4(28) | 4(55) | 4(91) | 4(136) | 4(190) | 4(253) | 4(325) | 4(406) | 4(496) |
D | 7 | 79 | 223 | 439 | 727 | 1087 | 1519 | 2023 | 2599 | 3247 | 3967 |
---|---|---|---|---|---|---|---|---|---|---|---|
x | 8 | 80 | 224 | 440 | 728 | 1088 | 1520 | 2024 | 2600 | 3248 | 3968 |
y | 3 | 9 | 15 | 21 | 27 | 33 | 39 | 45 | 51 | 57 | 63 |
D | 11 | 83 | 227 | 443 | 731 | 1091 | 1523 | 2027 | 2603 | 3251 | 3971 |
---|---|---|---|---|---|---|---|---|---|---|---|
x | 10 | 82 | 226 | 442 | 730 | 1090 | 1522 | 2026 | 2602 | 3250 | 3970 |
y | 3 | 9 | 15 | 21 | 27 | 33 | 39 | 45 | 51 | 57 | 63 |
D | 13 | 85 | 229 | 445 | 733 | 1093 | 1525 | 2029 | 2605 | 3253 | 3973 |
---|---|---|---|---|---|---|---|---|---|---|---|
x | 18 | 378 | 1710 | 4662 | 9882 | 18018 | 29718 | 45630 | 66402 | 92682 | 125118 |
y | 5 | 41 | 113 | 221 | 365 | 545 | 761 | 1013 | 1301 | 1625 | 1985 |
xf | 1(18) | 3(126) | 5(342) | 7(666) | 9(1098) | 11(1638) | 13(2286) | 15(3042) | 17(3906) | 19(4878) | 21(5958) |
D | 15 | 87 | 231 | 447 | 735 | 1095 | 1527 | 2031 | 2607 | 3255 | 3975 |
---|---|---|---|---|---|---|---|---|---|---|---|
x | 4 | 28 | 76 | 148 | 244 | 364 | 508 | 676 | 868 | 1084 | 1324 |
y | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 |
where the values of y for Sn3, Sn7, Sn11 and Sn15 and the values of x in Sn13 are the consecutive odd numbers. For Sn5, on the other hand, y is now a non consecutive triangular number ½[(3m + 1)2 + (3m + 1)]. Lastly, from the tables we can see that x takes on the following values as symmetrical ± pairs:
The Pell equations are set up according to the following formats with the x and ys taken from the above six tables. The first expression with n1 gives the alternate expression for x + y√D where the square term is divided by either 2 or 6 and n1 is a consecutive odd number = 3(2n + 1). The second expression with n2 gives the alternate expression x + y√D for Sn5 and Sn13 where n2 is a consecutive odd number × 3. Again in four out of six cases y is a consecutive odd number, in another it is a triangular number, and in the last case it is x which is the odd consecutive number.
Tables VII-IX give the formulas for all 10 Pell equations according to the format listed above with the triangular and odd numbers in blue.
(Sn3) Equal Expressions | (Sn15) Equal Expressions |
---|---|
R75 = (3(3) + √75)2 ∕6 = 26 + 3√75 | R15 = (3(1) + √15)2 ∕6 = 4 + 1√15 |
R219 = (3(5) + √219)2 ∕6 = 74 + 5√219 | R87 = (3(3) + √87)2 ∕6 = 28 + 3√87 |
R435 = (3(7) + √435)2 ∕6 = 146 + 7√435 | R231 = (3(5) + √231)2 ∕6 = 76 + 5√231 |
R723 = (3(9) + √723)2 ∕6 = 241 + 9√723 | R447 = (3(7) + √447)2 ∕6 = 148 + 7√447 |
R1083 = (3(11) + √1083)2 ∕6 = 362 + 11√1083 | R735 = (3(9) + √735)2 ∕6 = 244 + 9√735 |
R1515 = (3(13) + √1515)2 ∕6 = 506 + 13√1515 | R1095 = (3(11) + √1095)2 ∕6 = 364 + 11√1095 |
R2019 = (3(15) + √2019)2 ∕6 = 674 + 15√2019 | R1527 = (3(13) + √1527)2 ∕6 = 508 + 13√1527 |
R2595 = (3(17) + √2595)2 ∕6 = 866 + 17√2595 | R2031 = (3(15) + √2031)2 ∕6 = 676 + 15√203 |
R3243 = (3(19) + √3243)2 ∕6 = 1082 + 19√3243 | R2607 = (3(17) + √2607)2 ∕6 = 868 + 17√2607 |
R3963 = (3(21) + √3963)2 ∕6 = 1322 + 21√3963 | R3255 = (3(19) + √3255)2 ∕6 = 1084 + 19√3255 |
(Sn5) Equal Expressions | (Sn13) Equal Expressions |
---|---|
R5 = [(3(1) + √5)2 ∕4]3/2 = 9 + 4(1)√5 | R13 = [(3(1) + √13)2 ∕4]3/2 = 1(18) + 5√13 |
R77 = [(3(3) + √77)2 ∕4]3/2 = 351 + 4(10)√77 | R85 = [(3(3) + √85)2 ∕4]3/2 = 3(126) + 41√85 |
R221 = [(3(5) + √221)2 ∕4]3/2 = 1665 + 4(28)√221 | R229 = [(3(5) + √229)2 ∕4]3/2 = 5(342) + 113√229 |
R437 = [(3(7) + √437)2 ∕4]3/2 = 4599 + 4(55)√437 | R445 = [(3(7) + √445)2 ∕4]3/2 = 7(666) + 221√445 |
R725 = [(3(9) + √725)2 ∕4]3/2 = 9801 + 4(91)√725 | R733 = [(3(9) + √733)2 ∕4]3/2 = 9(1098) + 365√733 |
R1085 = [(3(11) + √1085)2 ∕4]3/2 = 17919 + 4(136)√1085 | R1093 = [(3(11) + √1093)2 ∕4]3/2 = 11(1638) + 545√1093 |
R1517 = [(3(13) + √1517)2 ∕4]3/2 = 29601 + 4(190)√1517 | R1525 = [(3(13) + √1525)2 ∕4]3/2 = 13(2286) + 761√1525 |
R2021 = [(3(15) + √2021)2 ∕4]3/2 = 45495 + 4(253)√2021 | R2029 = [(3(15) + √2029)2 ∕4]3/2 = 15(3042) + 1013√2029 |
R2597 = [(3(17) + √2597)2 ∕4]3/2 = 66249 + 4(325)√2597 | R2605 = [(3(17) + √2605)2 ∕4]3/2 = 17(9486) + 1301√2605 |
R3245 = [(3(19) + √3245)2 ∕4]3/2 = 92511 + 4(406)√3245 | R3253 = [(3(19) + √3253)2 ∕4]3/2 = 19(4878) + 1625√3253 |
(Sn7) Equal Expressions | (Sn11) Equal Expressions |
---|---|
R7 = (3(1) + √7)2 ∕2 = 8 + 3(1)√7 | R11 = (3(1) + √11)2 ∕2 = 10 + 3(1)√11 |
R79 = (3(3) + √79)2 ∕2 = 80 + 3(3)√79 | R83 = (3(3) + √83)2 ∕2 = 82 + 3(3)√83 |
R223 = (3(5) + √223)2 ∕2 = 224 + 3(5)√223 | R227 = (3(5) + √227)2 ∕2 = 226 + 3(5)√227 |
R439 = (3(7) + √439)2 ∕2 = 440 + 3(7)√439 | R443 = (3(7) + √443)2 ∕2 = 442 + 3(7)√443 |
R727 = (3(9) + √727)2 ∕2 = 728 + 3(9)√727 | R731 = (3(9) + √731)2 ∕2 = 730 + 3(9)√731 |
R1087 = (3(11) + √1087)2 ∕2 = 1088 + 3(11)√1087 | R1091 = (3(11) + √1091)2 ∕2 = 1090 + 3(11)√1091 |
R1519 = (3(13) + √1519)2 ∕2 = 1520 + 3(13)√1519 | R1523 = (3(13) + √1523)2 ∕2 = 1522 + 3(13)√1523 |
R2023 = (3(15) + √2023)2 ∕2 = 2024 + 3(15)√2023 | R2027 = (3(15) + √2027)2 ∕2 = 2026 + 3(15)√2027 |
R2599 = (3(17) + √2599)2 ∕2 = 2600 + 3(17)√2599 | R2603 = (3(17) + √2603)2 ∕2 = 2602 + 3(17)√2603 |
R3247 = (3(19) + √3247)2 ∕2 = 1322 + 3(19)√3247 | R3255 = (3(19) + √3255)2 ∕2 = 1084 + 3(19)√3255 |
This concludes Part XIXB. To go to the next continuation Part XIXC.
To go back to Part XIXA.
Go back to homepage.
Copyright © 2021 by Eddie N Gutierrez. E-Mail: enaguti1949@gmail.com